Currently viewing a development environment

How to make sense of recent CERN finding that challenges the Standard Model of particle physics

Don’t throw away your textbooks just yet

Adam Fortais

Physics

McMaster University

Last month, the European Organization for Nuclear Research (CERN) announced preliminary evidence from the Large Hadron Collider beauty experiment that, if verified, would violate “lepton universality.” Lepton universality is a principle that says three charged elementary particles — electrons, muons, and taus — can be treated identically, aside from their different masses. This result contradicts the Standard Model, which is physicists’ best description of the universe’s fundamental building blocks. 

If this finding is confirmed, it would be evidence that leptons cannot be treated equal, but it would still fall short of an observation. The difference is statistical: the term “evidence” implies researchers have identified a piece of information that would be contradicted once in 1000 experiments. In other words, they have a 0.001 chance of coming to the wrong conclusion. An “observation” is a higher bar. It implies something closer to one contradictory result once every three million experiments. 

This evidence strengthens the case for missing fundamental particles or interactions that do not exist within the Standard Model, but confirming the result wouldn’t kill the Standard Model. On the contrary, when viewed through the lens of Thomas Kuhn’s 1962 book, “The Structure of Scientific Revolutions,” this result looks a little like finding grey hairs on your pillow. It’s either a sign of a mature scientific theory, or of one under some extra stress.  

According to Kuhn, there are four broad stages of research within a field: Normal science, extraordinary research, adoption of a new paradigm, and aftermath of a scientific revolution. In some ways, normal science is akin to stamp collecting — new results are consistent within the framework of a field and serves to fill knowledge gaps. This stage is generally where research is applied to new technologies. But as a field ages, more and more results come out that don’t fit into the currently accepted framework. This leads some members of the field to engage in “extraordinary” research.

Extraordinary research ends one of two ways — finding a way to make anomalous discoveries fit the existing framework or an upheaval of the field. In the case of the results from CERN, it is still possible that with additional experiments the lepton violation is found to be a statistical anomaly. The more exciting endpoint of extraordinary research, though, is what Kuhn termed a paradigm shift, which is often used to describe events like the transition to a heliocentric model of the solar system or the advent of quantum mechanics.

How many incompatible results a paradigm can withstand varies from field to field, and the Standard Model is a particularly resilient one. In fact, many critics of the Standard Model cite this as a weakness of the model. For some, there are a few too many moveable pieces and details of the model that can be shifted to account for new results. On the other hand, the Standard Model has been very successful at predicting a range of strange, exotic, or elusive results that ended up being borne out experimentally. So how wrong could it really be?

Of course, this is probably what every generation of scientists believe about the era they’re brought up in. And this is what makes the preliminary results announced by CERN so exciting. Maybe with a few more experiments, these results will be found to be nothing more than a fluke. But maybe, just maybe, this is one more step towards a paradigm shift in particle physics. 

A newly discovered cryosphere-dwelling yeast stays alive by making ethanol

Rhodotorula frigidialcoholis was isolated from 150,000-year-old permafrost in the McMurdo Dry Valleys of Antarctica

Mitra Kashani

Microbial Ecology

Centers for Disease Control and Prevention

El sur de Inglaterra alberga a una pequeña, pero prospera población de walabíes de cuello rojo

Los walabíes fueron introducidos al país al principio del siglo XX

Maria Gatta

Ecology and Conservation Biology

University of the Witwatersrand, Johannesburg

Walabíes: son muy monos, relativamente pequeños, y para los europeos, tienen una apariencia inédita. Esto es lo que llevó a la introducción del walabí de cuello rojo, una especie australiana, a principios del siglo XX a países como Inglaterra, Irlanda, y Francia. En aquellos tiempos, los walabíes se mantenían en zoos y colecciones privadas. Algunos escaparon, sobre todo durante la segunda guerra mundial, cuando la gente tenía cosas más importantes por las que preocuparse por mantener vallas.

Hoy en día, hay muy poca información disponible sobre que les pasó a aquellos walabíes introducidos. Dos científicos, Holly English y Anthony Caravaggi, decidieron investigar qué pasó con aquellos animales. Recogieron información sobre avistamientos de walabíes en los registros oficiales, las redes sociales, y los periódicos. Gracias a lo monos e inusuales que son, los avistamientos suelen ser mencionados en los periódicos locales.

En su artículo reciente publicado en la revista científica Ecologia y Evolución, los investigadores encontraron pequeñas poblaciones de walabíes viviendo a lo largo del sur de Inglaterra. Aunque alguno de estos animales es probablemente un fugitivo moderno de una colección privada o un zoo, es improbable que tales escapadas sean el origen de todos los avistamientos de la región. Por ello, los investigadores creen que las poblaciones del sur de Inglaterra se están reproduciendo en libertad.

Así que, si alguna vez estas en el sur de Inglaterra y crees que has visto a un walabí, ¡no te sorprendas demasiado!

Research demonstrates speech-in-noise training helps children with auditory processing disorder

Children with APD have difficulty perceiving speech when there is background noise and may have trouble on cognitive tests

Stephanie Santo

Psychology

Deep sea bacteria use selfishness to their advantage

Some bathypelagic bacteria have found a way to maximize their energy intake by taking food into their cells before breaking it down

Sarah Brown

Marine Science

University of North Carolina - Chapel Hill

The screen you are reading this on is probably emitting volatile organic compounds

A new study demonstrates that, in addition to a variety of other household products, LCD screens also emit these compounds

Kay McCallum

Atmospheric Chemistry

McMaster University

We spend a lot of time indoors - so it’s important that we know what’s in indoor air. Indoor chemists are especially concerned with volatile organic compounds (VOCs, a class of molecules that includes benzene, formaldehyde, and more), which can be harmful to human health and are highly reactive.

VOCs are released into indoor air from a number of sources – plants, wall paint, cooking and cleaning – and, as a recent study by a pair of researchers at the University of Toronto shows, from LCS screens like those in your phone, TV, and laptop.

To measure how LCD screens affect air quality, the researchers collected data on what types of compounds were contained in two types of samples: one of regular indoor air, and one collected near the surface of on an LCD screen like a new TV or an old laptop. They identified the chemical signatures of those compounds using a technique called proton-transfer reaction mass spectrometry. They then cross-referenced these signatures against lists of known liquid crystal monomers (the “building blocks” of LCD screens) and other compounds used in LCD screen manufacturing.

They found over 30 VOCs and 10 L liquid crystal monomers were heavily emitted into the air exposed to the screen, including extremely reactive species like isoprene and acetic acid. This finding indicates that LCD screens are an important source of VOCs in indoor environments, and that our screen-time may be exposing us to more than just new things on the internet.

Getting vaccinated against COVID-19 improves mental health

People who received the COVID-19 vaccine experienced less depression and anxiety compared to unvaccinated individuals

Danielle Llaneza

Health and Medicine

Hunter College and MD Anderson Cancer Center

Don’t bank those seeds — some oaks can be “cryopreserved”

Acorns can’t be frozen, but tips of oak tree shoots can

Christina Del Greco

Genetics and Genomics

University of Michigan

Male and female mice form memories of fearful events differently

A drug that blocks memory forming in male mice has a different effect in females

Rita Ponce

Evolutionary Biology

Polytechnic Institute of Setúbal

Psilocybin reduced depression symptoms as much as a leading antidepressant

New research compared the “magic mushrooms” component to Lexapro

Soren Emerson

Neuroscience

Vanderbilt University

Cocaine use slices and dices RNA in mouse brain cells

The analysis of epigenetic changes caused by cocaine use adds to the evidence that substance use disorders are rooted in biology

Anna Rogers

Molecular Biology

UC Berkeley

Your gut bacteria may be hoarding your medication

Researchers have observed this effect in petri dishes and nematodes

Madeline Barron

Microbiology

University of Michigan

Meet the springhare: the first glow-in-the-dark African mammal known to science

Researchers discovered the springhare’s fluorescent abilities entirely by accident

Shakira Browne

Zoology

University College Dublin

Fluorescence is caused by an animal absorbing light and bouncing it back out again, and in nature, it’s not a new thing. Fluorescence occurs across only a handful of mammals but they span three different continents and inhabit entirely different ecosystems. The platypus is one such animal, whose glow-in-the-dark abilities were only discovered in 2020. 

But, a discovery earlier this year by Northland College researchers that springhares fluoresce is special: it is the first documented case of biofluorescence in an Afro-Eurasian placental mammal. The study purports that perhaps fluorescence in mammals is not as rare as once previously thought. 

The researchers entered Chicago’s Field Museum of Natural History armed with a flashlight, with the goal of examining the fluorescent abilities of flying squirrels. Along the way, they accidentally discovered that springhares also glow. One specimen they examined was collected in 1905, and continued to glow in the dark for over 100 years.

The researchers subsequently tested live springhares (this time, in the dead of night—springhares are nocturnal) and found they could also fluoresce, predictably stronger than in the dead specimens. This study raises the questions: What other animals are out there, pulsating in every different shade of the rainbow after the clock strikes midnight? 

For the first time ever, researchers have “housebroken” cows

Controlling where cow waste ends up could lead to cleaner air and water and decreased greenhouse gas emissions

Fernanda Ruiz Fadel

Animal Behavior and Behavioral Genetics

Advanced Identification Methods GmbH

Feeding extra amino acids to cells with a mutated enzyme makes them grow faster

This new finding could lead to advances in treatment of diseases caused by ARS mutations

Christina Del Greco

Genetics and Genomics

University of Michigan

White pine blister rust’s habitat range is changing with the climate

New study in Sequoia and Kings Canyon National Parks demonstrates the complexity of changing plant-pathogen interactions

Ornob Alam

Population Genetics

New York University

These uses of poop for protection are stranger than fiction

Defense by dung doesn’t always elicit disgust in predators to repel them

Simon Spichak

Neuroscience

Distance and our eyes distort the true colors of stars

New research calculates the colors of stars based on their actual energy distributions

Briley Lewis

Astronomy and Astrophysics

University of California, Los Angeles

Zebrafish without “love hormone” neurons show no desire to socialize with each other

New research shows the importance of oxytocin for social affiliation and isolation

Kareem Clark

Neuroscience

Virginia Polytechnic Institute and State University

Wild Goffin’s cockatoos can use tools, too

Scientists have observed captive cockatoos making tools before, but this is the first documented instance of tool use in wild cockatoos

Fernanda Ruiz Fadel

Animal Behavior and Behavioral Genetics

Advanced Identification Methods GmbH

Giant clams are growing faster than ever. That’s not a good thing

This supercharged growth is likely due to nitrate aerosols in our modern atmosphere

Sarah Heidmann

Fish Ecology

University of the Virgin Islands

The growth of modern giant clams is supercharged compared to growth measured from fossil clams. A recent study from the Red Sea has shown this, finding that growth lines from modern species are larger than those of fossils from similar animals dated to the Holocene and Pleistocene.

These increased growth rates appear to be related to higher amounts of nitrate aerosols in the modern atmosphere. These come from many different sources. Some are natural, such as lightning, biomass burning, and soil processing, but most are from anthropogenic activity like burning fossil fuels and agricultural fertilization.

This fast growth may seem like a good thing, but growth doesn’t mean anything about the overall health of the clams. Additionally, aerosols may actually reduce the productivity of marine phytoplankton, which represent almost half of the world’s primary production.

The overall effects of nitrate and other aerosol pollution on global land and ocean cycles are not well understood. They may appear to reduce global warming by improving carbon dioxide uptake and reflecting the sun’s heat, but they contribute to poor air quality. We can congratulate today’s super clams on their impressive growth. But in the long run, fewer emissions on our part are probably better for them.

More Lab Notes →