Sydney Brenner: the last giants of 20th century biology
Losing one of the heroes of 20th century science
Sydney Brenner died yesterday. That's him on the right, standing next to James Watson at the Asilomar Conference, 1975. I don't want to write a proper eulogy, because they've been done (here's a good one). It'll do to say that he was a scientist of a stratospheric status. I sometimes thought about him when I was in grad school and kept being surprised that we were both working in science at the same time. It was like reminding myself that a myth wasn't myth at all but real flesh and blood, like someone casually remarking that there were dragons in the parking lot. He won a Nobel Prize in 2002, rightfully so, but it should've been his second. He was a fulcrum of 20th century biology, a peer of essentially every famous biologist of the '50s, like Rosalind Franklin and Watson and Crick.
A lot of the focus from Brenner's career has been on his introducing Caenorhabditis elegans, a cute little flatworm into the biologist's repertoire. (It's okay, usually people just say "see el-uh-gans".) It should! He won a Nobel Prize for it. C. elegans was a great idea -- they're easy to work with, you can store them in the freezer (something you can't do with fruit flies or mice, other neuroscientist favorites), and they have a very low, very specific number of neurons -- 302. No more, no less. That makes them easy to study, easy to grow and maintain, and easy to learn on. If you walk into a C. elegans lab you might be lucky enough to see a scientist sitting at a microscope, plucking their own hairs off their arm or their eyebrows to use as hooks to pick up tiny worms. This is absolutely true.
It's astonishing to think about but Brenner should have already won a Nobel Prize by the time he actually got one for C. elegans. He was one of the last living members of the Phage Group, a collection of molecular biologists who used bacteriophages, viruses that infect bacteria, as models to discover the most basic fundamentals of genetics -- how DNA works, how proteins are made, and what the genetic code is. Earlier this week we published an article about Elisa Izaurralde, who worked out how messenger RNA (mRNA) gets distributed around the cell. Sydney Brenner invented the idea of mRNA more or less out of thin air. The idea is that mRNA acts as a temporary copy of the information encoded in DNA. A cell uses that copy to make a protein, instead of reading directly off of DNA. In the early 1960s there...wasn't much in the way of concrete evidence to support this idea. Brenner (and a few others, including Francis Crick) knew at the time that there was DNA, and there was protein, but there was something in the middle that was missing. They stuck RNA in the middle. Just like that.
*The Eighth Day of Creation: The Makers of the Revolution in Biology - Horace Freeland Judson