Surgeons can feel a robot’s hands performing surgeries for them
Scientists at Texas A&M developed a system using electrical pulses to help surgeons using the hands feel what they are doing
Although a “robot hand” might sound like something out of a science fiction movie, highly functional robotic hands are being developed for use in surgeries. Robotic hands are more compact than human hands, which reduces the size of the incisions needed to accommodate them. Robotics may also allow surgeries to be performed remotely, enabling surgeons to protect themselves in the case of, say, a global pandemic.
The major hurdle facing surgeon-guided robotic hands is the inability to accurately gauge the position of the hand in space. That’s because with the loss of a human hand comes the loss of proprioception, the innate spatial awareness of the body (this is what allows you touch your finger to your nose, even though you can’t see it). In a new study, researchers at Texas A&M University have developed a strategy to create the sensation of proprioception while using a robotic hand.
They delivered continuous electrical shocks — the intensity of which correlated with the proximity of the hand to its target — to the operator’s fingertips. They found that this technique enabled better distance perception than simple visual processing, and could therefore prevent excessive (and potentially damaging) force between the robotic hand and delicate tissue during surgery.